Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes.

Identifieur interne : 000012 ( Main/Exploration ); précédent : 000011; suivant : 000013

Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes.

Auteurs : Ming Pei You [Australie] ; Jay Ram Lamichhane [France] ; Jean-Noël Aubertot [France] ; Martin J. Barbetti [Australie]

Source :

RBID : pubmed:31859588

Descripteurs français

English descriptors

Abstract

Annual forage legumes across southern Australia continue to be devastated by soilborne diseases. Nine fungicide seed treatments (thiram, metalaxyl, iprodione, phosphonic acid, propamocarb, fluquinconazole, difenoconazole + metalaxyl, ipconazole + metalaxyl, sedaxane + difenoconazole + metalaxyl) and four foliar fungicide treatments (phosphonic acid, metalaxyl, propamocarb, iprodione) were tested on four subterranean clover cultivars against individual oomycete soilborne pathogens Pythium irregulare, Aphanomyces trifolii, and Phytophthora clandestina and the fungal pathogen Rhizoctonia solani. Best treatments were then further tested across southern Australia in 2 years of field experiments. Under controlled conditions, seed treatment with thiram was best against damping-off caused by P. irregulare across the four cultivars (Woogenellup, Riverina, Seaton Park, Meteora), while metalaxyl was the most effective for maximizing root and shoot weights. Against A. trifolii, metalaxyl, iprodione, difenoconazole + metalaxyl, ipconazole + metalaxyl, and sedaxane + difenoconazole + metalaxyl, all reduced damping-off; sedaxane + difenoconazole + metalaxyl, fluquinconazole, and ipconazole + metalaxyl all reduced lateral root disease across two or more cultivars; while iprodione, thiram, and sedaxane + difenoconazole + metalaxyl increased shoot dry weight. Against P. clandestina, metalaxyl was the most effective in reducing tap and lateral root rot followed by ipconazole + metalaxyl or phosphonic acid for tap and lateral rot, respectively. Against R. solani, there were no effects of fungicides. For P. irregulare and P. clandestina, there were strong seed fungicide × cultivar interactions (P < 0.001). Under controlled conditions for foliar fungicide spray treatments, phosphonic acid was best at preventing productivity losses from A. trifolii, but was ineffective against P. clandestina, P. irregulare, or R. solani. Overall, controlled environment studies highlighted strong potential for utilizing seed treatments against individual pathogens to ensure seedling emergence and early survival, with seed and foliar sprays enhancing productivity by reducing seedling damping-off and root disease from individual pathogens. However, in field experiments over 2 years across southern Australia against naturally occurring soilborne pathogen complexes involving these same pathogens, only rarely did fungicide seed treatments or foliar sprays tested show any benefit. It is evident that currently available fungicide seed and/or foliar spray treatment options do not offer effective field mitigation of damping-off and root disease on annual forage legumes that underpin livestock production across southern Australia. The main reason for this failure relates to the unpredictable and ever-changing soilborne pathogen complexes involved, highlighting a need to now refocus away from fungicide options, particularly toward developing and deploying new host tolerances, but also in deploying appropriate cultural control options.

DOI: 10.1094/PDIS-06-19-1252-RE
PubMed: 31859588


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes.</title>
<author>
<name sortKey="You, Ming Pei" sort="You, Ming Pei" uniqKey="You M" first="Ming Pei" last="You">Ming Pei You</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lamichhane, Jay Ram" sort="Lamichhane, Jay Ram" uniqKey="Lamichhane J" first="Jay Ram" last="Lamichhane">Jay Ram Lamichhane</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Université Fédérale de Toulouse, UMR AGIR, CS52627, F-31326 Castanet-Tolosan Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université Fédérale de Toulouse, UMR AGIR, CS52627, F-31326 Castanet-Tolosan Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Castanet-Tolosan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aubertot, Jean Noel" sort="Aubertot, Jean Noel" uniqKey="Aubertot J" first="Jean-Noël" last="Aubertot">Jean-Noël Aubertot</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Université Fédérale de Toulouse, UMR AGIR, CS52627, F-31326 Castanet-Tolosan Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université Fédérale de Toulouse, UMR AGIR, CS52627, F-31326 Castanet-Tolosan Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Castanet-Tolosan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barbetti, Martin J" sort="Barbetti, Martin J" uniqKey="Barbetti M" first="Martin J" last="Barbetti">Martin J. Barbetti</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31859588</idno>
<idno type="pmid">31859588</idno>
<idno type="doi">10.1094/PDIS-06-19-1252-RE</idno>
<idno type="wicri:Area/Main/Corpus">000318</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000318</idno>
<idno type="wicri:Area/Main/Curation">000318</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000318</idno>
<idno type="wicri:Area/Main/Exploration">000318</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes.</title>
<author>
<name sortKey="You, Ming Pei" sort="You, Ming Pei" uniqKey="You M" first="Ming Pei" last="You">Ming Pei You</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lamichhane, Jay Ram" sort="Lamichhane, Jay Ram" uniqKey="Lamichhane J" first="Jay Ram" last="Lamichhane">Jay Ram Lamichhane</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Université Fédérale de Toulouse, UMR AGIR, CS52627, F-31326 Castanet-Tolosan Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université Fédérale de Toulouse, UMR AGIR, CS52627, F-31326 Castanet-Tolosan Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Castanet-Tolosan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aubertot, Jean Noel" sort="Aubertot, Jean Noel" uniqKey="Aubertot J" first="Jean-Noël" last="Aubertot">Jean-Noël Aubertot</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRAE, Université Fédérale de Toulouse, UMR AGIR, CS52627, F-31326 Castanet-Tolosan Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université Fédérale de Toulouse, UMR AGIR, CS52627, F-31326 Castanet-Tolosan Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Castanet-Tolosan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barbetti, Martin J" sort="Barbetti, Martin J" uniqKey="Barbetti M" first="Martin J" last="Barbetti">Martin J. Barbetti</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant disease</title>
<idno type="ISSN">0191-2917</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fungicides, Industrial (MeSH)</term>
<term>Phytophthora (MeSH)</term>
<term>Plant Diseases (MeSH)</term>
<term>Pythium (MeSH)</term>
<term>Rhizoctonia (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Fongicides industriels (MeSH)</term>
<term>Maladies des plantes (MeSH)</term>
<term>Phytophthora (MeSH)</term>
<term>Pythium (MeSH)</term>
<term>Rhizoctonia (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Fungicides, Industrial</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phytophthora</term>
<term>Plant Diseases</term>
<term>Pythium</term>
<term>Rhizoctonia</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Fongicides industriels</term>
<term>Maladies des plantes</term>
<term>Phytophthora</term>
<term>Pythium</term>
<term>Rhizoctonia</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Annual forage legumes across southern Australia continue to be devastated by soilborne diseases. Nine fungicide seed treatments (thiram, metalaxyl, iprodione, phosphonic acid, propamocarb, fluquinconazole, difenoconazole + metalaxyl, ipconazole + metalaxyl, sedaxane + difenoconazole + metalaxyl) and four foliar fungicide treatments (phosphonic acid, metalaxyl, propamocarb, iprodione) were tested on four subterranean clover cultivars against individual oomycete soilborne pathogens
<i>Pythium irregulare</i>
,
<i>Aphanomyces trifolii</i>
, and
<i>Phytophthora clandestina</i>
and the fungal pathogen
<i>Rhizoctonia solani</i>
. Best treatments were then further tested across southern Australia in 2 years of field experiments. Under controlled conditions, seed treatment with thiram was best against damping-off caused by
<i>P. irregulare</i>
across the four cultivars (Woogenellup, Riverina, Seaton Park, Meteora), while metalaxyl was the most effective for maximizing root and shoot weights. Against
<i>A. trifolii</i>
, metalaxyl, iprodione, difenoconazole + metalaxyl, ipconazole + metalaxyl, and sedaxane + difenoconazole + metalaxyl, all reduced damping-off; sedaxane + difenoconazole + metalaxyl, fluquinconazole, and ipconazole + metalaxyl all reduced lateral root disease across two or more cultivars; while iprodione, thiram, and sedaxane + difenoconazole + metalaxyl increased shoot dry weight. Against
<i>P. clandestina</i>
, metalaxyl was the most effective in reducing tap and lateral root rot followed by ipconazole + metalaxyl or phosphonic acid for tap and lateral rot, respectively. Against
<i>R. solani</i>
, there were no effects of fungicides. For
<i>P. irregulare</i>
and
<i>P. clandestina</i>
, there were strong seed fungicide × cultivar interactions (
<i>P</i>
< 0.001). Under controlled conditions for foliar fungicide spray treatments, phosphonic acid was best at preventing productivity losses from
<i>A. trifolii</i>
, but was ineffective against
<i>P. clandestina</i>
,
<i>P. irregulare</i>
, or
<i>R. solani</i>
. Overall, controlled environment studies highlighted strong potential for utilizing seed treatments against individual pathogens to ensure seedling emergence and early survival, with seed and foliar sprays enhancing productivity by reducing seedling damping-off and root disease from individual pathogens. However, in field experiments over 2 years across southern Australia against naturally occurring soilborne pathogen complexes involving these same pathogens, only rarely did fungicide seed treatments or foliar sprays tested show any benefit. It is evident that currently available fungicide seed and/or foliar spray treatment options do not offer effective field mitigation of damping-off and root disease on annual forage legumes that underpin livestock production across southern Australia. The main reason for this failure relates to the unpredictable and ever-changing soilborne pathogen complexes involved, highlighting a need to now refocus away from fungicide options, particularly toward developing and deploying new host tolerances, but also in deploying appropriate cultural control options.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">31859588</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0191-2917</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>104</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant disease</Title>
<ISOAbbreviation>Plant Dis</ISOAbbreviation>
</Journal>
<ArticleTitle>Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes.</ArticleTitle>
<Pagination>
<MedlinePgn>904-920</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1094/PDIS-06-19-1252-RE</ELocationID>
<Abstract>
<AbstractText>Annual forage legumes across southern Australia continue to be devastated by soilborne diseases. Nine fungicide seed treatments (thiram, metalaxyl, iprodione, phosphonic acid, propamocarb, fluquinconazole, difenoconazole + metalaxyl, ipconazole + metalaxyl, sedaxane + difenoconazole + metalaxyl) and four foliar fungicide treatments (phosphonic acid, metalaxyl, propamocarb, iprodione) were tested on four subterranean clover cultivars against individual oomycete soilborne pathogens
<i>Pythium irregulare</i>
,
<i>Aphanomyces trifolii</i>
, and
<i>Phytophthora clandestina</i>
and the fungal pathogen
<i>Rhizoctonia solani</i>
. Best treatments were then further tested across southern Australia in 2 years of field experiments. Under controlled conditions, seed treatment with thiram was best against damping-off caused by
<i>P. irregulare</i>
across the four cultivars (Woogenellup, Riverina, Seaton Park, Meteora), while metalaxyl was the most effective for maximizing root and shoot weights. Against
<i>A. trifolii</i>
, metalaxyl, iprodione, difenoconazole + metalaxyl, ipconazole + metalaxyl, and sedaxane + difenoconazole + metalaxyl, all reduced damping-off; sedaxane + difenoconazole + metalaxyl, fluquinconazole, and ipconazole + metalaxyl all reduced lateral root disease across two or more cultivars; while iprodione, thiram, and sedaxane + difenoconazole + metalaxyl increased shoot dry weight. Against
<i>P. clandestina</i>
, metalaxyl was the most effective in reducing tap and lateral root rot followed by ipconazole + metalaxyl or phosphonic acid for tap and lateral rot, respectively. Against
<i>R. solani</i>
, there were no effects of fungicides. For
<i>P. irregulare</i>
and
<i>P. clandestina</i>
, there were strong seed fungicide × cultivar interactions (
<i>P</i>
< 0.001). Under controlled conditions for foliar fungicide spray treatments, phosphonic acid was best at preventing productivity losses from
<i>A. trifolii</i>
, but was ineffective against
<i>P. clandestina</i>
,
<i>P. irregulare</i>
, or
<i>R. solani</i>
. Overall, controlled environment studies highlighted strong potential for utilizing seed treatments against individual pathogens to ensure seedling emergence and early survival, with seed and foliar sprays enhancing productivity by reducing seedling damping-off and root disease from individual pathogens. However, in field experiments over 2 years across southern Australia against naturally occurring soilborne pathogen complexes involving these same pathogens, only rarely did fungicide seed treatments or foliar sprays tested show any benefit. It is evident that currently available fungicide seed and/or foliar spray treatment options do not offer effective field mitigation of damping-off and root disease on annual forage legumes that underpin livestock production across southern Australia. The main reason for this failure relates to the unpredictable and ever-changing soilborne pathogen complexes involved, highlighting a need to now refocus away from fungicide options, particularly toward developing and deploying new host tolerances, but also in deploying appropriate cultural control options.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>You</LastName>
<ForeName>Ming Pei</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, WA, 6009, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lamichhane</LastName>
<ForeName>Jay Ram</ForeName>
<Initials>JR</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-9780-0941</Identifier>
<AffiliationInfo>
<Affiliation>INRAE, Université Fédérale de Toulouse, UMR AGIR, CS52627, F-31326 Castanet-Tolosan Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aubertot</LastName>
<ForeName>Jean-Noël</ForeName>
<Initials>JN</Initials>
<AffiliationInfo>
<Affiliation>INRAE, Université Fédérale de Toulouse, UMR AGIR, CS52627, F-31326 Castanet-Tolosan Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barbetti</LastName>
<ForeName>Martin J</ForeName>
<Initials>MJ</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-5331-0817</Identifier>
<AffiliationInfo>
<Affiliation>School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, WA, 6009, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Dis</MedlineTA>
<NlmUniqueID>9882809</NlmUniqueID>
<ISSNLinking>0191-2917</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005659">Fungicides, Industrial</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005659" MajorTopicYN="Y">Fungicides, Industrial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="Y">Phytophthora</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011775" MajorTopicYN="Y">Pythium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012232" MajorTopicYN="N">Rhizoctonia</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aphanomyces trifolii</Keyword>
<Keyword MajorTopicYN="N">Phytophthora clandestina</Keyword>
<Keyword MajorTopicYN="N">Pythium irregulare</Keyword>
<Keyword MajorTopicYN="N">Rhizoctonia solani</Keyword>
<Keyword MajorTopicYN="N">Trifolium subterraneum</Keyword>
<Keyword MajorTopicYN="N">damping-off</Keyword>
<Keyword MajorTopicYN="N">forage legumes</Keyword>
<Keyword MajorTopicYN="N">fungicides</Keyword>
<Keyword MajorTopicYN="N">root rot</Keyword>
<Keyword MajorTopicYN="N">subterranean clover</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31859588</ArticleId>
<ArticleId IdType="doi">10.1094/PDIS-06-19-1252-RE</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Midi-Pyrénées</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Castanet-Tolosan</li>
</settlement>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="You, Ming Pei" sort="You, Ming Pei" uniqKey="You M" first="Ming Pei" last="You">Ming Pei You</name>
</noRegion>
<name sortKey="Barbetti, Martin J" sort="Barbetti, Martin J" uniqKey="Barbetti M" first="Martin J" last="Barbetti">Martin J. Barbetti</name>
</country>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Lamichhane, Jay Ram" sort="Lamichhane, Jay Ram" uniqKey="Lamichhane J" first="Jay Ram" last="Lamichhane">Jay Ram Lamichhane</name>
</region>
<name sortKey="Aubertot, Jean Noel" sort="Aubertot, Jean Noel" uniqKey="Aubertot J" first="Jean-Noël" last="Aubertot">Jean-Noël Aubertot</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000012 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000012 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31859588
   |texte=   Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31859588" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024